Step of Proof: can-apply-compose
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
can-apply-compose
:
A
,
B
,
C
:Type,
g
:(
A
(
B
+ Top)),
f
:(
B
(
C
+ Top)),
x
:
A
.
(
can-apply(
f
o
g
;
x
))
{(
can-apply(
g
;
x
)) & (
can-apply(
f
;do-apply(
g
;
x
)))}
latex
by ((Auto
)
CollapseTHEN (MoveToConcl (-1))
)
CollapseTHEN (((RWO "can-apply-compose-sq" (0))
CollapseTHENA (Auto
)
)
CollapseTHEN ((Unfold `guard` ( 0)
)
CollapseTHEN (AutoBoolCase
C
can-apply(
g
;
x
))
)
)
latex
C
.
Definitions
can-apply(
f
;
x
)
,
Type
,
{
T
}
,
Unit
,
P
Q
,
x
:
A
B
(
x
)
,
,
s
=
t
,
b
,
A
,
,
True
,
b
,
suptype(
S
;
T
)
,
left
+
right
,
do-apply(
f
;
x
)
,
S
T
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
Top
,
x
:
A
.
B
(
x
)
,
Void
,
P
Q
,
P
&
Q
,
t
T
,
False
Lemmas
can-apply-compose-sq
,
eqtt
to
assert
,
iff
transitivity
,
eqff
to
assert
,
assert
of
bnot
,
bnot
wf
,
not
wf
,
bool
wf
,
assert
wf
,
can-apply
wf
,
do-apply
wf
,
false
wf
origin